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The average change of intensity due to adding a heavy atom to a protein crystal is calculated for 
both the centric and the acentric reflections. The amount by which small shifts of the molecules 
change the intensities is obtained for the monoclinic and orthorhombic systems, and formulae are 
given for the changes caused by small transls.tions and rotations of the molecules, by alterations of 
the lattice parameters, and by ‘breathing’ movements. The effects always increase linearly with 
l/d. It is shown that quite small molecular shifts would interfere with the isomorphous-replacement 
method for proteins at the higher values of l/d, but not at the lower values. 

Introduction 
The work of Perutz and his colleagues (Green, Ingram 
& Perutz, 1954; Bragg & Perutz, 1954) has shown that 
the method of isomorphous replacement can be rtp- 
plied to protein crystals provided a sufficiently heavy 
atom is used. Since other methods of attack on protein 
crystals have so far either failed or been inconclusive, 
it seems probable that no serious progress can be 
made unless this method is used. This series of papers 
deals with some of the theoretical problems which 
have arisen in connection with the method. 

Two problems are considered in this paper. The first 
concerns the average change in intensity produced by 
adding extra atoms to the crystal, the rest of the unit 
cell remaining the same. The second deals with the 
average change of intensity produced by small shifts 
of the protein molecules, or by slight changes in the 
dimensions of the unit cell. We have considered the 
second problem because it has been shown for ribo- 
nuclease that such changes occur (King, Magdoff, 
Adelman & Harker, 1956; Magdoff & Crick, 1955) and 
may make it difficult to use isomorphous replacement 
very far out in reciprocal space. 

The isomorphous replacement method 
As is well known, there are two methods of using 
‘heavy’ atoms to determine crystal structures (see, 
for example, Lipson & Cochran, 1953, pp. 206-20). 
In the heavy atom method proper, only a single form 
of the crystal is required and the phases used to cal- 
culate the first trial Fourier are those calculated for 
the heavy atom alone, The problem of how heavy an 

* This work w&s started when both authors were members 
of the Protein Structure Project, Polytechnic Institute of 
Brooklyn, N.Y., U.S.A. 

atom is needed has been considered by Luzzati (1953). 
Because protein molecules are large (molecular weights 
> 10,000) an impossibly heavy atom would be re- 
quired for this method, and although, at some later 
stage, it may be possible to add a large number of 
heavy atoms, we shall for the moment leave this 
possibility on one side. 

In the isomorphous replacement method, on the other 
hand, two forms of the crystal are required. The unit- 
cell dimensions and the protein molecule must be 
essentially the same in both, but one of them must 
have one or more heavy atoms at some point where 
the other has either none, or very much lighter atoms. 
The position of the extra atoms must first be found by 
some Patterson method. Then for any reflection the 
amplitude and phases of the contribution of the extra 
atoms can be calculated, and in favourable cases the 
phase of the protein contribution can be found from 
the observed change of intensity produced by adding 
the extra atoms. 

The advantage of this method for proteins is that 
although atoms of relatively high atomic number 
must be used, the size required is within the bounds of 
possibility for the smaller proteins. For horse haemo- 
globin, with a molecular weight of 34,000 for the 
asymmetric unit, it has proved possible to determine 
the signs of 87 out of 94 h0Z reflections (l/d < 0.15), 
using silver and mercury atoms for isomorphous re- 
placements (Green et al., 1954). 

It is worth noting that for work on proteins various 
combinations of the two basic methods are very at- 
tractive. For example it may eventually be possible 
to add a large number of heavy atoms, say 20 iodines, 
to a protein molecule. Though it may prove difficult 
to locate these unambiguously from a Patterson syn- 
thesis, an isomorphous replacement of a mercury atom, 
for example, might enable the positions of all of them 



to be determined. Once these positions were found, 
the heavy atom method could be attempted. Alter- 
natively, the contribution of the heavy atoms could 
be used to decide between the two alternative phases 
given for an acentric reflection by a single isomorphous 
replacement. These possibilities, also, we shall leave 
for future consideration. 

Assumptions made 

z, v, z, (non-fractional) coordinates of an orthogonal 
frame in real space, in A; 

X, Y, 2, coordinates of an orthogonal frame in recip- 
rocal space, reciprocal to x, y, z, in A-1. 

(For the orthorhombic case x, y and z, are parallel 
to x, y, and z respectively. For the monoclinic case 
x, y and z are parallel to x, y and z* respectively, 
where z* is reciprocal to z.) 

It is known that the intensity distribution obtained 
from a protein crystal does not strictly obey the 
statistics expected from a random distribution of 
atoms, which we shall refer to here as ‘Wilson sta- 
tistics’ (Wilson, 1949; for a general account see Lipson 
& Co&ran, 1953). Not only is the curve of (I) against 
l/d not a monotonic one (see, for example, Perutz, 
H&49), but a set of intensities, all having similar values 
of l/d, does not always have the Wilson distribution 
(Luzzati, 1955). Nevertheless, we have developed the 
theory assuming that Wilson statistics are obeyed, 
and that the shape of the curve of (I) against l/d is 
gaussian. This is because we wish at this stage only 
to obtain results of a general nature, and these are the 
simplest assumptions possible. For the same reason 
we have considered the oxygen and carbon atoms to 
be equivalent to nitrogen, and have ignored the hy- 
drogen atoms. We have also ignored the solvent iu the 
crystal. To correct for the abnormal values of (1) an 
‘effective’ value for the number of atoms contributing 
to the intensities should be used in the formulae. 

R2 = X2+ Yz+Zz; 

5, &, z.,, COOrdinatf% of the breathing point (defined 
on p. 994); 

xc. Yes % coordinates of the ‘centre of gravity’ of 
the protein molecule. 

Symbols used only close to their place of definition 
are omitted here. 

Intensity changes due to the extra atoms 
The simplest measure to calculate is 

We have also assumed without special justification 
that in obtaining mean values we can simply average 
over ah possible values of the trigonometrical func- 
tions. This will usually be sufficiently accurate if the 
sample of intensities is large enough, if the region 
near the origin of reciprocal space is avoided, and if 
the atomic positions are random. 

-- 
{W)a)t/I~, where AI = I,-Ip . 

We require this so often that we propose to designate 
it by a special symbol, and write it @AI, to be read 
‘the fractional change of intensity’. 

For the centric case, when the amplitudes are real, 
we have 

AI = 2FpFE+F;, 
(AI)% = 4F;F;+4FpF;+F4,. 

Now we shall assume for the moment that Fp and 
FE are uncorrelated. Therefore we can write 

-- - 

Nomenclature 
The usual crystallographic conventions. In addition: We thus obtain 

F = A +iB for aJl terms (i.e. ikl and hkl) ; 
@AI = {(AW}t (@E+@T)* 

I = IFI*; -=- 
’ P = protein; IP 

1 = extra atoms, i.e. the isomorphous 
suffixes ; replacement atoms ; 

PE= protein plus extra atoms; 
fi 2(TJl,)4. 

.n = the nth atom of the protein; 

N, total number of effective atoms in the unit cell 
(not merely those in one asymmetric unit) ; 

@AI - (m)*/f, where AI = change in I due to the 
effect under consideration; 

For the acentric case, with complex amplitudes, we 
have 

APE = A,+A,, B pE = BpsBB . 

Whence we have 

AI = 2A,A,+A;+BB,B,+B$. 
@AI is read as ‘the fractional change in intensity; 
X, y, Z, fractional coordinatea of the unit cell; 

Assuming aa before that Fp and FE are uncorrelated, 
we can write 
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- -- 
A$A; = A;A; , BpB8e-0, 

ApAsB: = 0, 

ApA$=O, BpBBB: = 0, 

ApBpAEBE=O. 

This last relation depends upon AB = 0, which is --m 
always true if our set of reflections includes hkl when- 
ever hkE is included. 

Writing down the expressions for (AI)2 and making 
the above substitution, we easily obtain 

-- --ii (AI)2 = 4A~A;+4B;B~+~E+2~;+~8, 

Since A 3 p = g: = &Fp12, this becomes 
-- - 

(AI)2 = 21Fp121Fp,18+jF~14 
and so 

-- - 

GAI = (2 IFPI~IF,I~+ IFEI~)~ 

P$ 

l+ EF t -- 
W’PI* lBs12 

(2) 

It can be shown that though these formulae are 
not exact the corrections are small compared with the 
main term. It should be noted that we have tacitly 
assumed that (0 does not change with l/d, and so 
in using the formulae the averages should strictly go 
over only a small range of I/d. 

Now since proteins consist of L ammo acids the 
only permissible symmetry elements are rotation and 
screw axes. For such space groups we always have 
(Wilson, 1949; Rogers, 1950) the statistical result 

assuming all the atoms the same. N and I both refer 
to the pilnitive cell. Thus our approximate results 
become 

@AI * 2(NE/Np)* (fB/fp) , centric, (3) 
42 (iVE/Np)) (.fEyp) , acentric . (4) 

The full formulae depend on the value of Iz, but 
the correcting terms (under the square root, equations 
(I) and (2)) will usually be small. 

As an example, consider the case of a single mercury 
atom added to a protein containing about 1600 atoms 
(other than hydrogen) and therefore having a molec- 
ular weight of about 24,000. For those reflections whose 
amplitude is real we obtain, using equation (3), 

@AI rr 2 (&&” x y = O-57 , 

so that the average change of intensity would be a 

little over 50%. However, in practice this value has 
to be corrected for three effects. First, the mercury 
atom may not have been added to every molecule in 
the crystal, and thus an ‘effective’ atomic number 
should be used. Second, the average intensity from 
the protein may differ from the value expected from 
the Wilson statistics. To allow for this an effective 
value of N should be used. Thus if the average inten- 
sity of the protein in the above example is only half 
that expected on statistical grounds, the effective 
number of atoms in the protein should be taken as 
800. Both these effects have been found by Green et al. 
(195%) in their studies of horse haemoglobin. Third, 
we should strictly speaking use the ratio of (f&r) 
for the range of l/d considered, rather than the values 
at l/d = 0. 

Intensity changes due to shifts of the molecule 
As in the previous case, we shall take as our measure 
of the change of intensity the value of @AI = -- 
((AI)‘l)*/I. For th ose interested only in the results, 
numerical examples are given in Table 1. 

Consider first the centric case. For some particular 
refIection we can write AI = 2F(AF), since we shall 
be considering only very small changes and thus the 
(AF)z term can be neglected. Therefore 

(AI)2 = 4Fa(AF)2. 

Our problem therefore consists in expressing the right- 
hand side of this equation in terms of the usua1 
structure-factor formulae, and then averaging. 

For the acentric case we have 

I = A2+B2, 
AI = 2A(AA)+2B(AB), 

@W2 = 4A2(AA)2+8AB(AA)(AB)+4BWff~2, 

and again our problem is to find the average value 
of the terms on the right-hand side. We shall assume 
that N, the total number of atoms in the unit cell, 
is large. 

To enable us to express our resuhs in a compact 
form we use the parameter y, where y = 1 for the 
centric case and y = 2 for the acentric ones. 

We have worked out the formulae for all monoclinic 
and orthorhombic space groups in which proteins can 
occur (i.e. lacking centres of symmetry, mirror planes 
or glide planes). We find that the three possible mono- 
clinic space groups (P2, P2, and 172) all give the same 
formula, whereas the orthorhombic space groups give 
a slightly different formula, which is the same for all 
of them. Our resuIts are: 

Monoclinic : 
@AI = 

(W’y/y) tWx,+&J2+ k2{(4,J2- (AY,) (AY,~)]*. (5) 
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Orthorhombic : 
~ - - 

@AI - (4n/l/“/)[h2(Ax,)2+k2(Ay,)2+Z2(Az,)2]f . (6) 

In (5) and (6) y = 1 for centric reflections and y = 2 
for acentric reflections. 

The average values are taken over all the atoms 
in one asymmetric unit of the crystal, and then over 
all the reflections in the set being considered. 

The difference between the term containing h and 1 
in the two formulae reflects the fact that there is no 
unique choice of the a and c axes in the monoclinic 
case as there is in the orthorhombic. 

There is no difficulty in working out the results for 
the other crystal classes although the algebra would 
be laborious. We have not done this as the great 
majority of protein crystals are either monoclinic or 
orthorhombic and our main purpose is to obtain the 
order of magnitude of the different effects. It is worth 
noting that for centric cases an alternative measure 
to take is 

(which for the cases considered above is half @AI) 
as this can be evaluated rather more easily than @AI. 

The formulae given so far are very simple and easy 
to grasp, but they are not in the best form for detailed 
application. Rather than the indices (h, k, 1) and the 
fractional co-ordinates (x, y,z,) one would prefer 
reciprocal co-ordinates (X, Y, Z,), having dimensions 
8-1, and actual (not fractional) co-ordinates (z,y,z,) 
for real space. In addition, one would wish these two 
frames to be orthogonal. This presents no difficulties 
for the orthorhombic case, but for the monoclinic 
cases, when /? + 90”, it causes complications. We will 
therefore consider the two crystal systems separately. 

Since 
The orthorhombic system 

x, = ax,, and X = h/a, 
we can write 

h(Ax,) = hA(z,Ja) = h(Az,J/a-hz&la/a”) 
= X(Ar,)-Xrc,(Aa/a) , 

and similarly for 

k(Ay,,) and E(dz,) . 

Thus our general formula (equation (6)) becomas 

@AI = (47c/vy) [Xg[Ar,,-z,(Aa/a)]z 

+ Y2[A~,-y,(Ab/b)12+Z2[Az,-z,(dc/e)]2]~. (7) 
We now consider a number of cases in detail. 

(I) Pure translations 
The molecule is translated a small distance without 

rotation, and the lattice parameters are unchanged. 
Thus Aa = db = AC = 0. From equation (7) above 
we derive 

- ~ ~ 
@AI = (47c/vr) [Xe(As,)2+ Y~(A~,)~+Z~(AZ,J~]*. (8) 

Suppose we consider all the relevant reflections with 
similar values of l/d = R. Then for the general reflec- 
tions we shall have 

therefore 
X2+ Ye+22 = R2; 

If we now call the shift of the molecule AT, where 

(Ar)2 = (Acc,,)~+ (Ay,,)a+ (Ax,J2 for all n , 

our formula for the average value of all the general 
reflections (1 /d * R) becomes 

For a centric zone of reflections, say k = 0, we shall 
have 

35 = g2 = &Rz 

and if the projected shift of the molecule is dr,, where 

(Arp)2 = (AqJ2+ (Az,)~ for all n , 

we obtain for this zone, for all reflections having 
l/d *R, 

§AI = ‘5 (Ar,) . 

Notice that these two results are independent of the 
size or shape of either the unit cell or the protein 
molecule, as might be expected from an elementary 
argument. Notice also that they are for the average 
effects. Special areas of the reciprocal lattice may show 
higher local averages, especially if the translation is 
parallel to an axis of the cell. 

(2) Pure lattice chungee 
The molecule remains fixed with respect to the 

origin of co-ordinates, but the dimensions of the unit 
cell alter. Thus, 

AZ, = Aym = AZ, = 0 for all 7~ . 

Equation (7) becomes 

@AI = (4~/1/y)~(Aa/a)~ 

+yeyn(db/~)2+ZZz2(dCIC)2]f. R n 

Notice that in this case the disposition of the material 
in the unit cell matters somewhat. If the atoms of 
one asymmetric unit were all grouped very near the 
origin then @AI would be smaller than if they were 
more evenly distributed. 

(3) Breathing movements 
This term describes a ,movement in which the cell 

dimensions change, and simultaneously the molecules 
suffer a pure translation (without rotation) such that 
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one chosen point (xbs yb, %a) maintain6 the same frm- 
tiond co-ordinates. For this case 

h(Ax,) = hA (s,Ja) = hA ((z,,-q)/a) 

since A(zb/a) is zero by definition. 
Because (zA -zb) does not change, we obtain 

h(Ax,,) = h(r,-zb)(-Aa/a2) = X(z*-z&(-da/a) , 

and similar expressions for k(Ay,) and Z(Az,). 
Thus equation (7) becomes 

@AI = (43c/l/y)[X2(zn-q)~(Aa/a)2 

+ Y2(y,-y,)2 (Ab/~)2+X2(z,-z~)2(Ac/c)2]3. 

It can be shown that @AI is a minimum when the 
breathing point coincides with the centre of gravity. 

It should be clearly realized that the choice of origin 
in these examples is not completely arbitary. While it 
is true that a change of origin makes no difference to 
the intensities, it &JM alter the formulae used to cal- 
culate the structure factors. These are based on the 
assumption that only one asymmetric unit need be 
inserted in them, the symmetry taking care of the 
others. Thus the origin should always be that given 
in the Inimmtional Tublea. 

(4) Separat&g rot4ztions and tra7hdaJiona 
In this section we shall consider the lattice para- 

meters as constant. Thus the relevant formula is that 
given in equation (8). 

Any arbitrary movement of a body can be regarded 
as composed of a pure translation plus a rotation about 
some axis passing through its centre of gravity. It is 
easy to show that we can compound the effects of 
translations and rotations about the centre of gravity 
as random errors are compounded, that is, by taking 
the square root of the sum of their squares. 

(5) Rotatimw 
In this section the lattice parameters are considered 

to be constant. For an infinitesimal rotation of 6 
radians about an axis through the point (z~, yO, z,,), 
and having direction cosines COB ar,, COB au, COB ul, it is 
well known that if the point (or, yr, zr) moves to 
(xl+&:,, n+Ay,, zr+&) then 

& - &n(21-x2:O)+&12(~~--YD)+&la(ZI-22) P 
AY, = ~2~(~~-~0)+~22(~1~-~2o)+~22(~1-~~~~ 

AZ, = sal(xl- Zo)+Ela(Y1-Y~lo)+&aa(zl-Zo) 9 
where 

El1 = 52 = ,585 = 0, 
and 

s22 = -E22 = e COB a,, 
& 12 = -&al = 8 CO8 ciy , 
& 21 = -a,* = 8 co8 a,. 

These equations can be used both to find the movement 
A00 

(Ax,, dy,, AZ,) of the centre of gravity and also to 
obtain “(Ax,, Ay,, Az,J. 

Consider as an example the case of a rotation about 
an axis through the centre of gravity and parallel to 
the b axis. Then 

cosay=l, cosor,=cosa,=0. 

Thus we have 

Ax,, = 8(zn-zc), Ay,, - 0, AZ, = -e(X,--rc) . 

If we consider all the general reflections with l/d rr R, 
we obtain 

-- 
@AI = (W/~6)O~(zn-z,)2+ (z,-XJ~]*. 

For the centric zone perpendicular to the axis of rota- 
tion (i.e. k = 0) we derive for all reflections having 
l/d ==R 

-- 
@AI = (4nR/1/2)O[(~,--z,)~+ (z,+~)~]~, 

and for a centric zone which is not perpendicular to 
the axis of rotation, but contains it, say the zone 
h = 0, we have 

@AI = (4nR/~2)e[(~,-xc)fJf. 
For more complicated rotations it is worth noting 
that there is a close analogy (for those casea where 
we are averaging over all the general reflections having 
l/d * R) between the problem we have to consider 
and that of deriving the radius of gyration of a body 
about an arbitrary axis, which is tackled by means 
of the ‘inertia ellipsoid’ of the body, as explained in 
books on mechanics. 

The monoclinic system 
Owing to the fact that in general /? + 90” and that it 
can change, the. monoclinic system is potentially 
more complicated than the orthorhombic. We have 
been unable to find a general formulation which is not 
algebraically cumbersome. We have thus contended 
ourselves with presenting only the special cases for 
which the solution is relatively straightforward. 

(1) Lath3 paramzetfm fixed . 
We choose our orthogonal axes in real space (x,y,z) 

so that z is parallel to x, y to y, and z to z* (the axis 
reciprocal to z). The frame (X, Y, 2) is as usual re- 
ciprocal to (x, y, z). We easily obtain 

x = axfcz co8 /? , 
1 

X = h/a, 
2 =czsin/9, 2 = E/c&n/3-h/atan@, > 

and, therefore, hx+lz = Xx+Zz, as might have been 
expected. We also have y = by and Y = k/b, aa in 
the orthorhombia case. Since our axes are fixed 

h(Ax)+l(Az) = X(Axj+Z(Az) , 
and thus 

61 
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twxn) + W,P -*- 
= XyAs,)2+z2(Az,)2+2xz(Az~) (AZ,) . (9) 

We can also show that in the general case (axes 
varying) 

k2{ (AYTJ2- (AY7mYd)l 

= Y21-A (Yn-YA12+ y2(Y,-Yc)2m42 * (10) 

Thus, as we should except, a pure translation of the 
molecule, parallel to the y axis, produces no change 
in the intensities, since (y,-y,) is invariant under 
such a change, for all n. Without loss of generality, 
therefore, we can restrict ourselves to motions in 
which the y co-ordinates of the centre of gravity 
remains unchanged. Let us further arbitrarily restrict 
ourselves to sets of intensities for which E = 0, for 
example by always including the reflection at ( -X, 2) 
whenever that at (X, 2) is included-i-. Then, nu&iking 
these restriction, and substituting equation (9) and 
(10) into equation (5) we obtain 

- - 
@AI = (4n/l/r)[X2(AzJ”+ Y2(Ayn)2+2BEjqi, 

and this is identical with the expression derived for 
fixed axes iu the orthorhombic case (equation (8)). 
Thus the results already derived for translations and 
rotations of the molecules, the axes being fixed, in the 
orthorhombic system carry straight over into the 
restricted monoclinic cases. We shall therefore not 
discuss them further. 

(2) Breathing movemen& 
In the monoclinic case we cannot derive a breathing 

point (whose fm&mal co-ordinates do not change) 
in a manner independent of the choice of axes unless 
/l is constant, and da/a = AC/C. With this restriction 
it is easily shown that, the orientation of the molecules 
remaining constant, 

h(Ax,)+Z(Az,) = -(Aa/a)[X(z,-q)+Z(z,--z~)] . 

Once again, it is found that if the averaging is such 
that E = 0 we obtain, with these restrictions, exactly 
the same formulae as in the orthorhombic case, except 
that ya must be taken to be equal to yc, as might 
have been expected. As before, @AI is a mtimum 
when the breathing point coincides with the centre 
of gravity, or, more correctly, falIs on a line, parallel 
to the b axis, which passes through the centre of 
gravity. 

We shall deal only with the very restricted case in 
which the molecules remain fixed with respect to the 
origin, and the axes stay the same length but change 

t This is not a wwere restriction, because we have a choice 
for the .x axis of the unit cell in the monoclinic case. 

their positions slightly. We shall assume the x axis 
to rotate? through an angle Apx and the z axis through 
A,9,. Since the oo-ordinates of the molecule in the 
(stationary) 5, y, z frame remain unchanged we have 

A(Xs,+Zz,) = s,AX+z,AZ; 

moreover, AY = 0 and we thus have to obtain the 
values of AX and AZ in the stationary X, Y, Z frame 
for a lattice point which maintains the same indices 
(h, k, 1). These changes are found to be 

AX = (A,9,).2, 
-AZ = (A,!l,).X+Z(A@,-A/?,)/tan/?. 

The algebra becomes somewhat complicated, so we 
select ss an illustration the special case ,J = 90”. Then 

AX = (A/9,)2, AZ = -(A/3,)X, 
and so 

[WxJ+WW12 
= cz;4z2(Aj?,)2+z~X2(A~s)2-2~,~,XZ(A/3x) (A,!l,) . 

If we average over all the relevant values of l/d -rr R, - 
so that X2 = 0, and if we have the special case 
Id&( = I&,[, we see that our result is the same as 
for the case where the axes are kept fixed and the 
molecule is rotated by an angle (Ap,) about an axis 
parallel to b and passing through the origin. 

General remarks 
The results we have derived are all of a statistical 
nature, and if exact answers were required the for- 
mulae would have to be used with caution. They 
should certainly not be applied to the very low orders, 
for example, which are influenced by the shape of the 
molecule and by the nature of solvent in the crystal. 

Our statistical assumptions really imply that the 
‘lumpiness’ of the protein is fairly evenly distributed 
within it, and is roughly the same near, say, the out- 
side of the molecule, sa near the inside. Such assump- 
tions will occasionally break down but it is difficult 
to see any likely way in which our answers could be 
systematically wrong by a large factor. 

The analogy developed above between the mono- 
clinic and the orthorhombic cwx is not complete. 
A simple translation of the molecule, perpendicular to 
the b axis, will always give, in the monoclinic system, 
a zone of the reciprocal lattice where the intensity 
changes are very small or zero. This is true for the 
orthorhombic case when the translation is parallel to 
one of the axes, but if, for example, the direction of 
translation is midway between two axes there is no 
zone for which the intensity changes are nearly zero. 
This is because the movement of one molecule in one 

t Our convention for the direction of rotation is such that 
A/l = A,+A& 
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Table 1. Average @AI for spacinga of 3 B 
@AI = Icdr,2}f/f; p ro te’ m molecuk aaeumed to be a sphere, radius 17 A. 

Centric zone 
Nature of the ehift VW 

Uisplacement of the molecule by O-1 A, perpendicular to the lo axie 
(cell dimensions and orientation of molecule unchanged)? 

I Molecule fixed with ita C. of G. 12 A from 
30% 

General 
reflections 

Change of all cell dimensions by +% 
I 

the origin in e diction perpendicular to b 24 
(orientation of the molecules unchanged) Breathing movement& with the breathing 

I point it the C. of CL 
Rotation of the molecule bv So about an axis through the C. of 0. and Darallel to the b axis 

II3 

(cell dimensiona unchan& 
Rotation of the molecule by 4” about an axis through the C. of Q. and perpendicular to the 

28 

b axis (cell dimensions ;nchanged) 
_ _ 

20 
Rotation of the molecule by +” about an axis 12 A from ita C. of G. parallel to the b axis 

(cell dimensions unchanged) 
Change of /I of the monoclinic cell, /j 9 90”, lAbxl = lA/3oj = t” (axes constant length; 

moleoule fixed with its C. of G. 12 A from the origin) 

42 
42 

24 

24 
t This case is indeDendent of both the size of the mole&e and the unit cell. The remainder depend on the former, but not 

on ‘the latter. 
$ The meaning of this tarm is explained on page 904. 

direction implies movements of the other molecules in possible to determine only a rather limited number of 
different directions, which in such a case are not phases unless @AI for the heavy atom is several times 
parallel to one another. that due to the shifts of the molecules. 

It may be worth pointing out that in every case we 
are really calculating the effective value of some 
length or other. It is thus not surprising that in cases 
of rotation, for example, we need to estimate the 
‘radius of gyration’ of the protein molecule. For this 
reason the effects are not very sensitive to the molec- 
ular weight of the protein, generally increasing only 
&B the cube root of the molecular weight. They are 
of course also influenced by the shape of the protein, 
being least, in general, for a spherical molecule. 

collclusion 

Examples 
As might be expected, all the effects increase linearly 
with l/d. As long as the changes are small, aa assumed 
in the theory, the effects due to rotation are all 
proportional to the angle of rotation, and those due to 
breathing movements or pure translations are also 
proportional to the amount of change imposed, These 
points should be remembered in studying the examples 
provided here. 

Our general conclusion is quite clear. Fairly small 
shifts of the molecules may produce sufficient changes 
in the intensities seriously to interfere with the iso- 
morphous-replacement method at the Wigher values of 
l/a’. That such changes can occur in certain circum- 
stances has aheady been shown from an examination 
of the ho1 intensities from monoclinic ribonuclease 
(P2,) crystallised from different solvents (Magdoff & 
Crick, 1955). It remains to be seen how great they 
will be in an isomorphous replacement and whether 
other proteins will show any such shifts. 

On the other hand, if two unit cells have identical 
cell dimensions to within, say, 1 part in 500 it is 
unlikely that the molecule will have moved sufficiently 
to affect appreciably the lower orders of the diffraction 
pattern. It is thus a sensible precaution to measure 
cell dimensions m accurately aa possible. 

To simplify presentation we have calculated all the 
numerical examples for spacings of 3 A (R = 4 A-l), 
and for a spherical protein molecule of radius 17 A, 
which corresponds to a molecular weight around 
15,000. One molecule per asymmetric unit is assumed. 
The results are the average values for @AI for all the 
relevant reflections having R 5 9 A. Special areas in 
the reciprocal lattice may have higher local averages. 
All the results given in Table 1 (except the last) apply 
to both the monoclinic and the orthorhombic cases. 
The other centric projections of the orthorhombic cases 
can be obtained by analogy. 

It is not yet clear exactly what is the best method 
for detecting a lack of strict isomorphism in an at- 
tempted isomorphoua replacement, but an obvious 
way would be to study how the changes of intensity 
varied with l/d, collecting data from as far out in 
reciprocal space as possible. If @AI increased rapidly 
at high l/d, for example, this would suggest that some 
shift had taken place. It should be possible in this 
way to estimate approximately the range of l/d over 
which the effects were too small to matter. 

In studying the table the results obtained in the 
first part of the paper for the values of @AI produced 
by a heavy atom should be borne in mind. It will be 

Another possible method would be to examine how 
AI varied with intensities of different magnitude (but 
with similar values of R). The value of AI due to the 
extra atoms is on the average greater for a large in- 
tensity than for a small one. On the other hand a lack 
of strict isomorphism is loosely equivalent to sampling 
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the continuous transform of the protein at slightly GREEN, D. W., INQEAM, V. M. t PERUTZ, M. F. (1954). 
different points, so that AI will be largest when the PTOC. Roy. Sot. A, 225, 287. 

gradient of I in reciprocal space is greatest. Statisti- KING, M. V., MAQDOFF, B. S., ADEI.IU.N, M. B. & Hat- 

tally this is likely to be correlated with the smaller KER, D. (1956). Acta Cryst. 9, 460. 

V&VXZ of I. In other words, on the average the extra 
LLPSON, H. & COCERAN, W. (1953). The Determination of 

atoms produce the bigger changes in the larger in- 
C?ya?tcsl 8tTudUre8. London : Bell. 

tensities, whereas shifts of the protein produce the 
LUZATI, V. (1953). AC&Z Cry&. 6, 142. 

bigger changes in the smaller intensities. We have not 
LUZZATI, V. (1955). Acta Cryst. 8, 795. 
MAQDOlW, B. S. & CRIOE, F. H. C. (1955). Ackz Cry&. 8, 

yet developed the exact theory for this approach. 461. 
PERUTZ, M. F. (1949). Proc. Roy. Sot. A, 195, 474. 
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